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We study symmetric vortex merger in quasi-geostrophic flows using numerical simu-
lations with high vertical resolution. We analyse the effect of varying the vertical aspect
ratio of the vortices and compare with the barotropic case. During the merging of
potential vorticity cores with small aspect ratio, we observe the birth of secondary
instabilities on the filaments. This is a new phenomenon not seen in baroclinic
simulations having low vertical resolution. Passive Lagrangian tracers are used to
explore the transport of fluid parcels during vortex merger, to provide a detailed view
of the flow evolution, and to determine the value of the critical merging distance for
baroclinic vortices.

1. Introduction
Rotating turbulent flows are characterized by the presence of intense coherent

vortices which contain a significant fraction of the energy and the enstrophy of
the system and are nearly impermeable to inward and outward particle fluxes (see
e.g. Bengtson & Lighthill 1982; McWilliams 1984, 1989, 1990; Flierl 1987; McIn-
tyre 1989; Ingersoll 1990; Elhmaidi, Provenzale & Babiano 1993; Hopfinger & van
Heijst 1993; Babiano et al. 1994; McWilliams, Weiss & Yavneh 1994, 1999; Proven-
zale 1999). These vortices live much longer than a typical eddy turnover time and
intermittently undergo strongly dissipative, non-reversible (inelastic) interactions with
each other, see e.g. Dritschel (1995) for the case of barotropic turbulence. The
mechanisms of inelastic interaction have been shown to be of central importance
for the evolution of the statistical characteristics of the flow, see e.g. Carnevale
et al. (1991) and Weiss & McWilliams (1993) for two-dimensional turbulence and
McWilliams et al. (1999) for baroclinic quasi-geostrophic (three-dimensional) turbu-
lence.

In two-dimensional turbulence, like-sign vortex merger is the primary interaction
responsible for the evolution of the vortex population, and it is associated with the
inverse energy cascade from small to large scales (e.g. Kraichnan & Montgomery
1980). Conversely, the direct cascade of enstrophy from large to small scales takes
place mainly through strong filamentation events, which ultimately lead to enstrophy
dissipation.

In quasi-geostrophic three-dimensional turbulence, similar cascades take place. Here
as well, the properties of same-sign vortex merging determine the flow evolution,
together with the new possibilities of merging of vortices on slightly different vertical
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levels and of vortex alignment, during which vortices on different levels settle on a
common vertical line (McWilliams 1989; McWilliams & Weiss 1994; McWilliams et
al. 1994, 1999; Sutyrin, McWilliams & Saravanan 1998).

Owing to its importance in controlling the evolution of rotating flows, the problem
of a proper understanding of vortex merging has stimulated widespread interest.
Vortex merging has been studied in depth in the two-dimensional case (see e.g.
Zabusky, Hughes & Roberts 1979; Melander, Zabusky & McWilliams 1987, 1988;
Waugh 1992; Dritschel 1995; Nielsen et al. 1996; Kevlahan & Farge 1997), where the
problem of the symmetric merger of equal patches of relative vorticity has received
particular attention. One of the main results of these studies is the identification of
a ‘critical merging distance’, dc, below which two equal-vorticity patches merge to
form a single, nearly axisymmetric, final vortex. For two identical patches of constant
relative vorticity on an infinite plane one finds dc ≈ 3.3R where R is the initial radius
of the patches.

The merging of quasi-geostrophic baroclinic vortices has been explored less thor-
oughly, mainly focusing on the simplified case of two-layer systems (Griffiths &
Hopfinger 1987; Polvani, Zabusky & Flierl 1989; Verron, Hopfinger & McWilliams
1990; Verron & Hopfinger 1991; Verron & Valcke 1994; Valcke & Verron 1997).
An interesting problem here concerns the role of stratification. The laboratory exper-
iments of Griffiths & Hopfinger (1987) on stably-stratified two-layer rotating fluid
have indicated that the conditions for merging strongly depend on the type of strati-
fication. Later on, however, numerical simulations by Polvani et al. (1989) indicated
that stratification does not significantly affect the properties of vortex merging in
two-layer quasi-geostrophic flows, thus opening an intriguing discrepancy with the
experimental results. These results were reconsidered by Verron et al. (1990), who
solved the discrepancy by showing the importance of the type of initial conditions.
In fact, the results of Polvani et al. (1989) were obtained by starting with two equal
patches of potential vorticity in one layer, keeping a constant reservoir of potential
vorticity in the other layer (what is called a PVI initialization). In this case, the
strength of stratification does not significantly affect vortex merging. However, strat-
ification does play an important role if one starts with two anomalies of relative
vorticity in one layer, and zero vorticity in the other (what is called RVI initialization,
and the one that was used in the laboratory experiments). The implications of these
results and an intermediate form of initialization are discussed further by Verron &
Hopfinger (1991).

From the above discussion, it is clear that the vertical structure of the initial
conditions plays an important role in the merging process. In the case of low vertical
resolution (two layers), it is hard to properly resolve the vertical structure of the
vortices, and the extreme conditions of RVI and PVI initializations are encountered
when trying to define baroclinic initial conditions in such a minimal system. An
alternative and physically more interesting possibility is to raise the vertical resolution,
obtaining a better definition of the detailed structure of the flow. In the present work,
we adopt this approach and focus on the study, using high vertical resolution, of the
merging of identical, ellipsoidal, cosine-shaped PV distributions centred on the same
vertical level (symmetric merger).

The rest of this paper is organized as follows. In § 2 we give a short introduc-
tion to the quasi-geostrophic approximation and we describe our approach to the
study of vortex merging. Sections 3 and 4 contain the discussion of the Eulerian
and Lagrangian aspects of the merging process. Finally, § 5 gives conclusions and
perspectives.
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2. Physical and numerical background
2.1. The quasi-geostrophic approximation

The quasi-geostrophic (QG) equations represent an approximation to the primitive
equations in the case of rapidly rotating and stably stratified fluid (e.g. Pedlosky
1987). As such, they are relevant to large-scale planetary geophysical flows in the
atmosphere and the oceans when relative vorticity is much smaller than planetary
vorticity.

Important non-dimensional parameters of the problem are the Rossby number

Ro =
U

fL
, (1)

where L and U are characteristic length and velocity scales of the fluid motion; f
is the Coriolis parameter defined as f = 2Ω · n, where Ω is the rotation rate of the
Earth and n is the unit vector in the local vertical direction; and the Burger number,

Bu =

(
NH

fL

)2

, (2)

where

N2(z) = −g
ρ

∂ρ

∂z
(3)

is the Brunt–Väisälä (buoyancy) frequency, g is the acceleration due to gravity, ρ is
the fluid density and H is a typical vertical scale of motion.

In the quasi-geostrophic approximation, the Rossby number is assumed to be small,
Ro � 1, while the Burger number, although typically less than one for atmospheric
and oceanic vortices, is not necessarily assumed to be small.

In this approximation, and assuming no external forcing, the equation of fluid
motion becomes

Dq

Dt
≡ ∂q

∂t
+ J(ψ, q) = D, (4)

where

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x

is the Jacobian operator, ψ is the stream function and the potential vorticity q is
defined as

q =
∂2ψ

∂x2
+
∂2ψ

∂y2
+

∂

∂z

1

S(z)

∂ψ

∂z
, (5)

where S(z) = N2(z)/f2 represents the strength of the stratification. The term D on
the right-hand side of (4) represents dissipative processes, which are assumed to be
small compared with the other terms. Explicit forms of the dissipation are discussed
in the next subsection. In the absence of dissipation, (4) states the conservation of
potential vorticity q for each fluid particle.

At the order of the QG approximation, vertical velocities vanish and the horizontal
velocity u = (u, v) is non-divergent. This is defined by

u = −∂ψ
∂y
, v =

∂ψ

∂x
. (6)

Numerical simulations of vortex dynamics in quasi-geostrophic turbulence have
been discussed by Hua & Haidvogel (1986), McWilliams (1989), Meacham (1993),
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McWilliams & Weiss (1994), McWilliams et al. (1994), Dritschel & Saravanan (1994),
Meacham et al. (1994), Sutyrin et al. (1998), McWilliams et al. (1999).

In the case of uniform stratification, S = const., it is possible to introduce a stretched
coordinate system where the vertical coordinate is rescaled as z → z′ = (N/f)z. In
the new variables, the right-hand side of (5) becomes the isotropic three-dimensional
Laplacian operator,

q = ∇2ψ, where ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z′2
. (7)

A well-known prediction by Charney (1971) claims that the solutions in the stretched
coordinate frame should be statistically isotropic in the inertial range. Numerical
simulations by McWilliams et al. (1994) have shown that this prediction is only
approximately verified in that an initially random isotropic spectrum evolves into
an anisotropic spectrum, and that the self-organization of vortices and subsequent
merging and alignment processes result in slighly flattened ellipsoidal vortices rather
than spherical ones (in rescaled coordinates).

2.2. The numerical model

The numerical code used to integrate the Eulerian equation of motion, (4), is based
on the finite difference method discussed by Shchepetkin & McWilliams (1998). In
this approach, an F-cycle correction scheme, multigrid elliptic solver is used to invert
the discrete analogue of (5), see e.g. Yavneh & McWilliams (1995). A third-order-
accurate predictor-corrector (Leap-Frog–Adams-Moulton III) scheme is used for time
stepping, while both spatial derivatives and spatial interpolations in the advection
operator are kept accurate at sixth order. The discretization scheme for the Jacobian
operator in (4) is cast into flux-divergent form and it keeps a high degree of spatial
isotropy by retaining fluxes along the grid as well as diagonal fluxes, similarly to the
classical Arakawa Jacobian.

In any numerical integration of turbulent flow, a basic problem is to achieve a
Reynolds number that is as large as possible, while keeping the solution relatively
smooth on the grid scale. To deal with this issue, in most previous studies a hy-
perviscosity operator has been used to parametrize subgrid dissipative processes,
D = (−1)p+1νp∇2p+2ψ where p = 1, 2 . . . . The values of the coefficient νp and of
the power p are dictated by the compromise between the desire to have minimal
dissipation and the necessity of keeping the solution smooth on the grid scale. For
p> 2 this is often referred to as scale-selective dissipation.

For a given grid resolution, it is possible to reach even smaller overall dissipation by
resorting to an explicit locally adaptive dissipation (ELAD) technique, see Shchepetkin
& McWilliams (1998). This approach is based on the ‘principle of monotonicity’ for
the advection equation, which postulates that an advected quantity (such as potential
vorticity in (4)) may only be: (i) conserved along the trajectory of each fluid particle,
and (ii) diffused, satisfying the local maximum principle for the diffusion equation. For
the discretized version of equation (4), this procedure first performs an inviscid time
step, then it checks (at every grid point) whether the value of the newly computed
PV field lies within pre-selected permissible bounds based on the minimum and
maximum values of the field at the previous time step and at neighbouring points in
the upstream direction. If the limits are exceeded (either above or below), the excess
PV values (overshoots) are diffused in a conservative manner by distributing them
among neighbouring points. In principle, this requires several iterations, as the entire
procedure should be repeated until all the newly computed potential vorticity values
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lie within the permissible bounds. In practice, in most cases only a few iterations are
sufficient. In the present study we use eight diffusive iterations at each time step.

In addition to ELAD, we also employ an ‘extrema discriminating’ algorithm. It is
well-known (e.g. Leonard 1979), that any total variation diminishing (TVD) algorithm,
while preserving monotonicity in the profiles of advected quantities, causes artificial
truncation of narrow extrema. The goal of an extrema discriminating algorithm is
to distinguish between narrow physical extrema and spurious extrema generated by
dispersive overshoot in the advection scheme. To this end, here we use a criterion
discussed by Shchepetkin & McWilliams (1998), based on checking the convexity of
the profile of the advected quantity (here, PV) along a line of six grid points centred
on the extremum. If the finite-difference, discrete analogue of the second derivative
keeps the same sign along four consecutive grid points, then the tested extremum
is accepted as physical. In this case, the permissible bounds around this point are
relaxed, and the amount of dissipation is locally reduced. By contrast, if the second
derivative changes sign, the permissible bounds are kept as defined by the standard
ELAD algorithm, and the extremum will be reduced or suppressed in the following
iteration. The mathematical background of this approach is the fact that dispersive
errors generated by high-order-accurate advection schemes have oscillatory patterns
with wavelength close to or slightly larger than twice the grid spacing, and will thus
be classified as spurious extrema, while the physical extrema (which must be properly
propagated by the advection scheme) occur on scales larger than a few grid points.

We believe that whereas the general characteristics of the merging process should
not be affected by the specific choice of the dissipation scheme, a locally adaptive
scheme deals better with the small-scale structures which form during merging. In
order to reach high resolution, the numerical code has been parallelized to run on
shared-memory parallel machines. Simulations with a moderate vertical resolution
(up to 64 levels) easily run on single-processor work stations.

2.3. Setup of the numerical experiments

In the following, we consider a domain with horizontal size 2π and rescaled vertical
size D. Thus, 06 (x, y) < 2π and 06 z′ = Nz/f < D. In all the cases considered,
we use a constant Brunt–Väisälä frequency N(z) = N0. We use periodic boundary
conditions in both horizontal and vertical directions, and the vertical extent D of the
domain is chosen to ensure that the merging vortices are sufficiently far away from the
boundaries. Note that, since we consider PV fields that are symmetric with respect to
the mid-plane z′c = D/2, no-stress and periodic vertical boundary conditions provide
the same results.

The horizontal resolution is set to Nh = 256 grid points for the general runs and to
Nh = 128 for the exploration of the critical merging distance (see § 4.4); the vertical
resolution Nz is varied between 16 and 256 levels. The time step is chosen such that
the CFL number never exceeds 1

4
during the whole evolution. In order to compare

cases with different vertical aspect ratio, and to have approximately the same time
scales for horizontal motions of advected tracers, we have normalized the maximum
PV in each simulation such that the initial kinetic energy on the central horizontal
plane z′c = D/2 assumes a fixed value:

〈E〉z′c =
1

2(2π)2

∫∫ [(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2
]

dx dy = 0.5. (8)

The initial conditions for the merging process are provided by two ellipsoidal PV
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Figure 1. Initial PV distribution: (a) the cosine profile of the vortices, (b) horizontal PV section on
the mid-plane z′c = D/2, (c) vertical PV section on the plane (x, z).

Nz H/R D Tmax

1 ∞ (barotropic) 24
256 1.50 2π 20
256 0.66 2π 20
256 0.585 2π 50
64 2.50 2π 20
64 0.66 2π 20
64 0.16 π/2 20

Table 1. Values of the vertical resolution Nz , vertical aspect ratio H/R, vertical physical domain
size D and maximum time Tmax for the simulations with horizontal resolution Nh = 256 discussed
in the text.

distributions, having circular horizontal cross-sections with radius R = π/4 at the
mid-plane and half-height H , defining the initial vertical aspect ratio H/R. The PV
profile has a cosine shape, and the centres of the two PV distributions are located
on the central plane z′c = D/2 at distance d from each other. In most experiments, in
order to have rapid merging, we fix d well below the critical merging distance. For
d = 2R, a value we often use, the two initial vortices touch each other at the centre
of the domain. Figure 1 shows the initial PV profile, and the initial horizontal and
vertical cross-sections through the centre of the domain.

After generating the initial PV distribution, the mean PV value must be subtracted
from the original field, as needed to solve the Poisson equation (5) with periodic
boundary conditions. Indeed, since the quasi-geostrophic equations are invariant
under addition of a function of the vertical coordinate, we redefine PV on each
vertical level as (Yavneh & McWilliams 1995)

q′ = q − 〈q〉h(z) where 〈q〉h(z) =
1

(2π)2

∫∫
q dx dy, (9)

and similarly for the stream function.
The various cases described below correspond to different choices of the vertical

aspect ratio H/R, vertical domain size D and vertical resolution Nz , as summarized in
table 1. Note that changing the vertical aspect ratio of the initial vortices is equivalent
to changing the strength of the stratification. Recalling that the vertical coordinate is
z′ = Nz/f, it is clear that a change in H (with L = 2π and R constant) can be due
to either a change in the vertical size of the vortex or a change in N/f.
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t = 6.0 t = 12.0 t = 20.0

Figure 2. Relative vorticity at times t = 6, 12, 20 for the barotropic case.

3. Vortex merging: Eulerian analysis
3.1. Role of the vertical stratification

One of the main goals of this work is to study how the strength of the vertical stratifi-
cation affects the merging process. To this end, we consider simulations with different
values of the initial vertical aspect ratio, H/R, while keeping a fixed stratification,
N/f = 1.

We start our analysis by first considering, as reference, barotropic vortex merging.
Thus, we generate two initially circular distributions of relative vorticity and integrate
(4) with one vertical layer and periodic boundary conditions. The two vortices have
initial radius R and their centres are at a distance d = 2R. Thus, the vortices initially
touch each other. For consistency, these two-dimensional vortices have the same
kinetic energy as the three-dimensional vortices in the central horizontal plane.

Figure 2 shows the vorticity field for the barotropic case at different instants of time.
Starting from an initial distance which is well below the ‘merging threshold’ (Polvani
et al. 1989), the two vortices merge rapidly to form a single final core surrounded
by thin vorticity filaments. As discussed by Melander et al. (1987), the merging can
be described as an axisymmetrization process where the merging vortices, owing to
the inviscid conservation of circulation, expel excess angular momentum through
filamentation. The filaments do not undergo any further instability and they are
slowly destroyed by dissipation.

We now consider the merging process for three-dimensional vortices with vertical
aspect ratio H/R = 1.5 in a domain with vertical size D = 2π. Figure 3(a) shows
horizontal sections of potential vorticity on the mid-plane z′c = D/2, where the vortices
reach their maximum horizontal extent. Figure 3(b) shows horizontal sections of the
PV distribution at a height of z′1 = z′c + 3H/4, and 3(c) shows vertical sections of
the PV field, on the plane y = π. These latter images show that what appeared as
filaments in a horizontal section is actually an ensemble of ‘PV sheets’ shed off by the
merging cores, which curve to engulf the merging vortices.

Any similarity with the barotropic case breaks down when we look at what
happens above or below the central horizontal plane. At the height z′1, the two initial
PV distributions form two circles of PV which are at a distance of about 3 radii
from each other (not shown). In a barotropic flow, this would be about the critical
distance for merger. Above this value, we would expect two barotropic vortices to
simply orbit around each other. In the present case, however, the baroclinic coupling
with the lower levels induces the two cores to elongate into a spiral-like shape, neither
merging in a central vortex nor remaining unperturbed. At heights corresponding



338 J. von Hardenberg and others

t = 6.0 t = 12.0 t = 20.0
(a)

(b)

(c)

Figure 3. Potential vorticity distribution for baroclinic merging with vertical aspect ratio H/R = 1.5
at times t = 6, 12, 20. (a) Horizontal sections of potential vorticity on the mid-plane z′c = D/2; (b)
horizontal sections of potential vorticity on the plane z′1 = 1

2
D+ 3

4
H; (c) vertical sections of potential

vorticity on the plane (x, z).

to the top of the vortices, PV is shaped into a spiral and nothing is left to form a
final core. As evident from figure 3, together with the necessary increase of the final
vortex radius due to conservation of circulation, this leads to an effective decrease of
the final vortex height with respect to its initial value, and thus to a decrease of the
vertical aspect ratio. We return to this point in § 3.2.

As suggested by figure 3, the PV sheets form a spiralling envelope around the
merged vortices, showing an unexpected amount of structure. However, the vertical
curvature of the filaments (as seen in figure 3c) is not an intrinsically baroclinic effect.
To verify this, we have studied the evolution of an ensemble of superposed two-
dimensional layers, independent of each other, each having as initial condition the
PV distribution appropriate for that level. That is, we have artificially cut the vertical
coupling in (4), by dropping the vertical derivative in the definition of the potential
vorticity (5). In the resulting PV field, the filaments display a ‘vertical’ curvature which
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Figure 4. Volume rendering of potential vorticity at times t = 0, 1, 2, 4 for baroclinic merging with
H/R = 1.5.

is similar to that observed in the three-dimensional case. The vertical curvature of the
filaments is generated only by the fact that the PV distribution is different at different
levels, thus inducing a different dynamic time scale in each layer. Indeed, the result
that small scales are not strongly coupled in the vertical makes sense from the nature
of the inversion operator.

Another interesting aspect concerns the dynamics of the central vortex cores, which
evolve into an elongated shape, with a faster and thinner handle preceding a curved
and flattened core (a sort of spoon-like shape). The core then thins out and evolves to
form the filaments which are shed off. This behaviour is different from what happens
in the barotropic case, where there is no fast-moving handle preceding the core. A
three-dimensional rendering of the PV field, shown in the four panels of figure 4,
illustrates the structure of the merging vortex cores.

At a larger vertical aspect ratio, H/R = 2.5, the picture is substantially unaltered. At
lower aspect ratios, however, novel features appear. For initially flatter vortices, with
H/R = 0.66, the vorticity filaments shed during the merging process develop secondary
instabilities and small second-generation vortices appear along the filaments. Figure 5
shows three horizontal (a) and vertical (b) sections of the PV field at different instants
of time. The filaments still have a vertical curvature as for larger aspect ratios, but in
addition the newly formed vortices are visible along the filaments.

This phenomenon is even stronger for flatter vortices, as demonstrated in figure
6 for aspect ratio H/R = 0.16. In this case, the filaments are almost completely
destroyed by the instability and the second-generation vortices dominate the PV
distribution far from the central core.

To better understand the nature of this instability we have analysed in detail the
process leading to the formation of a secondary vortex. We defined a small region
around the location where the vortex forms and calculated the barotropic energy
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t = 6.0 t = 12.0 t = 20.0
(a)

(b)

Figure 5. Potential vorticity distribution for baroclinic merging with vertical aspect ratioH/R = 0.66
at times t = 6, 12, 20. (a) Horizontal sections of potential vorticity on the mid-plane z′c = D/2; (b)
vertical sections of potential vorticity on the plane (x, z).

t = 6.0 t = 12.0 t = 20.0

Figure 6. Potential vorticity distribution for baroclinic merging with vertical aspect ratio
H/R = 0.16. The panels show horizontal sections of potential vorticity at times t = 6, 12, 20
on the mid-plane z′c = D/2.

conversion term u′v′∂yu0 and the baroclinic energy conversion term S(z)−1v′∂zψ′. Here
u′ and v′ are respectively the tangential and radial velocity anomalies, u0 = u, and
an overbar denotes local averaging in the tangential direction (e.g. Pierrehumbert &
Swanson 1995). Figure 7(b) shows the amplitude of the barotropic and baroclinic
energy conversion terms along the portion of the filament indicated by the box in
figure 7(a). The energy conversion terms are herein obtained as integrals along the
direction perpendicular to the filament (approximated by x) and plotted as a function
of y. The different magnitude of the two energy conversion terms suggests that the
instability is mainly due to barotropic shear instability, without a significant baroclinic
effect.
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Figure 7. Barotropic and baroclinic energy conversion terms in filament instability for H/R = 0.66
at time t = 10. (a) Horizontal PV section on the central plane z′c. The small box indicates the
area of study. (b) Barotropic energy conversion at z′c = D/2, barotropic energy conversion at
z′1 = D/2 + 3H/4, and baroclinic energy conversion at z′1, integrated along x and plotted as a
function of y.

Given that the instability of the filaments is a barotropic process, one may wonder
why the same instability is absent in purely barotropic flows. For two-dimensional
turbulence, adverse shear (Dritschel 1989) and strain (Dritschel et al. 1991) generated
by a central vortex have been suggested to stabilize vorticity filaments. Along these
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lines, Kevlahan & Farge (1997) have numerically shown that merging barotropic
vortices do indeed stabilize vorticity filaments emitted during merger. Clearly, this
mechanism is not at work for flat baroclinic vortices. One possible explanation relies
upon the fact that the interactions are much more local in baroclinic flows, as may
be seen from the different form of the Green’s function, G3D(r) ∝ 1/r at small r,
compared to the barotropic form G2D(r) ∝ log r. In quasi-geostrophic turbulence, the
stream-function field generated by an isolated, three-dimensional point vortex centred
on r = (x2+y2+z′2)1/2 = 0 in a stratified fluid with constant N/f is G3D(r) ∝ 1/r. This
corresponds to an induced velocity field with strength proportional to 1/r2. From this
expression, one can recover the barotropic case by considering a line vortex aligned
with the vertical axis, z′, and integrate the baroclinic Green’s function along z′. One
then obtains the barotropic Green’s function G2D ∝ log r, which gives a velocity field
with strength proportional to 1/r. As a consequence, whereas in the barotropic case the
adverse shear and strain fields induced by the central vorticity core are able to stabilize
the filaments, in the three-dimensional case the more local interactions prevent this
possibility and the filaments become shear unstable. This interpretation agrees with
the results of Waugh & Dritschel (1991), who studied filament dynamics around
merging vortices for a variety of Green’s functions, including one approximating the
1/r behaviour of the three-dimensional Green’s function at large r. The present results
confirm that it is indeed the shorter range of the interaction that leads to filament
instability.

The behaviour of flat QG vortices has interesting similarities with the evolution of
vorticity filaments in surface quasigeostrophic dynamics (SQG), see e.g. Held et al.
(1995), which describes the advection of a scalar field (e.g. temperature) by an infinite
reservoir of uniform PV. The Green’s function for SQG dynamics has the same form
as that for a point vortex element in three-dimensional quasi-geostrophic flows. The
simulations of Held et al. (1995) indicated that the free evolution of random initial
conditions in the SQG approximation leads to the formation of coherent vortices
that interact with each other, undergoing filamentation processes that are not too
dissimilar from what is observed in barotropic turbulence. In SQG, however, the
filaments become shear unstable, and roll up into vortices which then generate other
unstable filaments at smaller scales. This process leads to a cascade of instabilities
associated with the presence of several generations of vortices.

The SQG dynamics represents a good approximation to the three-dimensional
dynamics studied here in the limit H/R → 0, i.e. for flat vortices. For vortices with
finite vertical extent, the Green’s function at a given horizontal position is obtained by
integrating over the vertical extent of the vortex. For vortices with small vertical aspect
ratio, such as those depicted in figures 4 and 5, at large distances from the core the
vertical extent of the vortex is unimportant, and the Green’s function resembles that of
SQG dynamics, G3D ∝ 1/r. Thus, one observes filament instabilities and generation
of smaller vortices. At small distance from the vortices, however, the vertical extent
of the vortices cannot be overlooked, and the appropriate stream-function field has
to be obtained by integrating over the vortex height. This leads to a slower decay
of the velocity field close to the vortex, and to a strain field that is strong enough
to prevent the instability. Thus, one obtains a natural regularization of the potential
ultraviolet catastrophe of SQG and observes only a finite number of generations of
secondary vortices.

As a final comment we note that simulations with lower vertical resolution (64
layers) have provided analogous results, indicating that we have satisfactorily resolved
the vertical structure of the merging vortices.
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Figure 8. Final vertical aspect ratio H/R of a merged vortex versus its value for
the two initial vortices.

3.2. Evolution of the vertical aspect ratio

The study of freely-decaying three-dimensional quasi-geostrophic turbulence evolving
from random initial conditions has indicated, at intermediate times, the appearance of
a vortex population characterized by approximate horizontal axisymmetry, ellipsoidal
shape and preferred vertical aspect ratio H/R ≈ 0.8 (McWilliams & Weiss 1994;
McWilliams et al. 1994, 1999).

In this type of three-dimensional turbulence both vortex merging and vortex
alignment play a role in the evolution of vortex statistics. Vortex alignment and
merging of vortices on different vertical levels tend to increase the average vertical
aspect ratio of the population (McWilliams et al. 1994; Sutyrin et al. 1998). On the
other hand, the merging of vortices on the same level seems to provide a competitive,
efficient mechanism for limiting the vertical size of the evolving vortices. Here we find
that the merging of tall (H/R = 1.5, 2.5) vortices leads to a final core with smaller
vertical aspect ratio, due to the filamentation of the PV distribution at the levels far
away from the central plane. Nothing like this is observed when the vortices are flatter
(H/R = 0.66, 0.16). In this case, even though we could a priori expect an increase of
the vortex radius after merging and no increase in vortex height (thus, a decrease of
H/R), the vertical aspect ratio does not grow during the merging, indicating that a
significant fraction of the merged vortex has been first filamented and then dissipated.
In figure 8 we show the value of the vertical aspect ratio H/R after merging versus
its initial value, for a number of cases. The values of H and R used to define the
aspect ratios reported in figure 8 are obtained by determining, for each initial and
final (merged) vortex, the surface inside which potential vorticity, averaged inside the
vortex, becomes 5% of its maximum value at the centre of the vortex. The value of
H is one-half of the largest vertical extent of this surface, while the value of R is
one-half of the largest horizontal extent of the surface.

Whenever H/R> 1 initially, we observe a tendency toward a smaller value at the
end of the merging process, while H/R is approximately constant when it is initially
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less than one. Note, in particular, that initially spherical vortices (H/R = 1) evolve
into a final vortex which is a flattened ellipsoid, indicating that isotropy (in rescaled
coordinates) is not preserved in vortex merging, in agreement with the obervations of
McWilliams et al. (1999).

We suggest that this mechanism, which effectively accelerates the decrease of the
vertical aspect ratio during the merging of tall vortices, could significantly limit the
vertical size of the vortices during the evolution of freely-decaying three-dimensional
quasi-geostrophic turbulence, leading, together with vortex alignment, to a vortex
population with slightly flattened shape in rescaled coordinates (x, y, Nz/f). This
population of vortices is presumably typical of the period during which self-similar
decay is present (McWilliams et al. 1999).

4. Vortex merging: Lagrangian analysis
4.1. Motivation and setup

In the previous section, we have provided a characterization of merging in a standard
Eulerian framework. The dynamics of fluid particles during the merging event provides
a complementary Lagrangian picture of the merging process.

To obtain a Lagrangian picture of vortex merging, we randomly distribute 32 768
passive particles in two circles with radius R, corresponding to the two initial PV cores,
on the central horizontal plane z′c = D/2. In the quasi-geostrophic approximation,
the flow is in hydrostatic equilibrium and the vertical velocity vanishes, w = 0.
This implies that the particle motion is purely horizontal, and it is described by the
equations

dx

dt
= −∂ψ

∂y
,

dy

dt
=
∂ψ

∂x
, (1)

where (x(t), y(t)) is the particle position at time t and (−∂ψ/∂y, ∂ψ/∂x) is the horizon-
tal velocity. We numerically integrate the tracer dynamics by employing a leap-frog
scheme with a periodic correction phase to damp the computational mode and a
fourth-order local interpolator to obtain the velocity at the tracer position. As shown
by Zouari & Babiano (1990), local bilinear interpolation is insufficient to provide
reliable individual particle trajectories.

4.2. Core structure

Lagrangian tracers provide a detailed picture of the evolution of the vortex cores
during merging. Figure 9(a–d) shows the distribution of passive particles at successive
evolutive times, for (a) the barotropic case, and for baroclinic situations with aspect
ratio (b) H/R = 1.5, (c) H/R = 0.66, and (d) H/R = 0.16. For both two-dimensional
and three-dimensional flows, the particle populations initially placed in the merging
vortices wrap around each other, keeping their identities for long times. Mixing of
particle populations takes place only on diffusive time scales.

The interface between the two merging cores, however, evolves differently under
barotropic and baroclinic conditions. In the two-dimensional case, this interface is
S-shaped and winds up at later times to form a simple spiral with a leading bulky core.
For three-dimensional merging, the interface has a more complicated shape. In this
case, the ‘tongue’ that preceeds the vortex core is clearly visible, and a double spiral
structure is created inside the final core. Due to the more convoluted interface between
the two particle populations, diffusive effects can act more rapidly to homogenize the
final particle distribution in baroclinic merging.
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In the case with unstable vorticity filaments (H/R = 0.66), the tracers clearly mark
the secondary vortices which form on the filaments. Some of these second generation
vortices trap tracers for long times, analogously to what happens for barotropic
vortices.

4.3. Core entrainment

In the process of vortex merging, it is interesting to identify the source region for
the fluid that ends up in the final core. To address this point we have uniformly
seeded 2562 tracer particles, on both the central level of the domain, z′c = D/2, and
at z′1 = z′c + 3

4
H , and we have followed their evolution up to the time Tmax = 20 (our

‘final’ state).
For simplicity, we discuss only the case H/R = 1.5, as the cases for smaller vertical

aspect ratio do not introduce new effects for this specific issue. Figure 10(a) shows
the initial distribution of particles, where each tracer has been assigned a grey-scale
coding that represents its final distance from the centre of the final (merged) vortex.
The grey scale has been defined to clearly distinguish tracers which ended up inside
the final vortex from those which remained outside.

On the mid-plane z′c = D/2, the particles ending in the final vortex originate mainly
from the cores of the merging vortices, plus a small contribution from two highly-
structured external lobes. Analogously, almost all the particles which were initially
in the cores of the merging vortices end up in the core of the final vortex. The
hyperbolic point between the two initial cores may be clearly seen at the centre of
the figure, as it is identified by diverging and converging streaks of tracers, crossing
each other at the centre of the domain. The fluid around the unstable manifold of
this central hyperbolic point (see e.g. Ottino 1989 for an introduction to chaotic
advection) is expelled during the merging process and it ends up far from the final
vortex. Analogously, part of the outer shells of the initial vortices gets expelled,
generating the filaments that we discussed previously. The fluid coming from the two
external lobes ends up in a peripheral circulation cell just around the merged core.
These external lobes are reminiscent of the stable manifolds originating from the
central hyperbolic point.

The picture at the level z′1, close to the top of the initial vortices, is quite different.
On this level, the initial potential vorticity does not generate a final core, and all PV
ends up in spiral-shaped filaments. Figure 10(b) confirms this picture. The particles
moving to the centre of the domain, above the top of the final vortex found at lower
levels, come from two complex kidney-shaped regions apparently connected with the
stable manifold of the central hyperbolic point. Particles inside the initial vortices do
not play a significant role, as some of them migrate toward the centre of the domain
while others are expelled toward external regions. This complex behaviour is in line
with the complicated structures observed in the vertical sections of the flow evolution.

4.4. Critical merging distance

The study of vortex merging in barotropic flows has indicated the existence of a
critical distance, dc ≈ 3.3R for isolated, equal patches of constant vorticity on the
infinite domain. Above this distance apart, vortices do not merge and simply rotate
around each other. Here, we extend this study to the case of equal ellipsoidal vortices
in continuously stratified flow, and explore the dependence of the critical merging
distance on the vertical aspect ratio of the initial vortices.

To this end, we consider vortices with different vertical aspect ratio and different
initial separation, and measure the time they take to achieve complete merging.
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t = 2.0 t = 6.0

t = 12.0 t = 20.0

(a)

t = 2.0 t = 6.0

t = 12.0 t = 20.0

(b)

Figure 9 (a, b). For caption see facing page.

A first problem in this context is the definition of merger itself. One option is
to use a definition based on the amount of circulation trapped at the centre of
the domain, or study the stability of steadily rotating equilibria (Dritschel 1985).
However, Lagrangian tracers provide a simple alternative method. As shown above,
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t = 2.0 t = 6.0

t = 12.0 t = 20.0

(c)

t = 2.0 t = 6.0

t = 12.0 t = 20.0

(d )

Figure 9. Distribution of N = 32 768 passive particles initially seeded inside the two vortex cores
on the central plane z′c. The two shades of grey mark the populations seeded in the two initial
cores. Times plotted are t = 2, 6, 12, 20. (a) Barotropic case, (b) H/R = 1.5, (c) H/R = 0.66, (d)
H/R = 0.16.
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(a)

(b)

Figure 10. Initial tracer distribution for H/R = 1.5. The grey scale indicates the final distance
from the centre of the domain that the particles will achieve at the end of the merging process, as
depicted in the smaller panel inset. (a) z′c = D/2, (b) z′1 = D/2 + 3H/4.
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Figure 11. (a) Time to merge as a function of initial vortex distance apart, for different values of
the initial vertical aspect ratio H/R, as indicated in the legend. The value of d/R for which the
curve tends to infinity provides an estimate of the critical merging distance dc(H/R). (b) Critical
merging distance dc(H/R)/R as a function of the initial vertical aspect ratio H/R.
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the core of the final vortex is composed mainly of fluid originating in the cores of
the two merging vortices. Thus, by marking the fluid particles in the merging cores,
and tracking when most of the particles reach the central region of the domain
(where the final vortex produced by merging resides), we can determine whether and
when merging has taken place. Operationally, we seed a number of passive tracer
particles in two small disks with radius ri = ciR, ci6 1, centred in the cores of the
initial vortices on the central level z′c. During the subsequent evolution, we count the
number of particles Nc(t) which reach a suitably defined central region of the domain,
say a circle with radius rf = cfR, cf 6 2. When Nc(t) reaches a given threshold, herein
chosen to be 99% of the total number of particles seeded, we declare that merging
has taken place. Other values of the threshold, around the chosen one, provide similar
estimates of the merging time.

The number of tracers we use in the following experiments is N = 1024. We choose
ci = 1

4
and cf = 3

4
and explore different initial vortex separations, at different vertical

aspect ratios (H/R = 0.66, 1, 1.5, 2.5, 4). Due to the large number of cases we have
to consider, we use a smaller resolution of 128 × 128 × 64 grid points. The lower
resolution influences only the details of the merging, without strongly influencing the
estimate of dc(H/R). A test run with resolution 256×256×64 grid points, H/R = 1.5
and d = 2.3R, has provided the same estimate of the critical merging distance as the
lower resolution case. In figure 11(a), we plot the time to merge (as defined above) as
a function of the initial separation, for the different vertical aspect ratios considered.

For each value of the initial vertical aspect ratio, the time to merge increases
monotonically and then tends to infinity in correspondence with the critical merging
distance dc(H/R). Figure 11(b) shows the critical merging distance as a function of
the vertical aspect ratio. These results show that baroclinicity has a strong influence
on the value of dc(H/R). At low vertical aspect ratio, interactions are more local
and the critical merging distance is as low as dc(0.66) ≈ 2.1R. As the vortices get
taller, dc(H/R) increases, becoming even larger than that obtained for barotropic
vortices. This behaviour, observed by Verron et al. (1990) for two-layer vortices, here
is complicated by the fact that tall vortex columns become considerably distorted
during the evolution, and the central level (where relative vorticity is maximum) can
undergo merging before the higher and lower levels. At still larger values of H/R,
for which vorticity is approximately constant on different levels, dc(H/R) decreases to
the value appropriate for barotropic vortices (Verron et al. 1990). We also performed
numerical simulations on the merging of top-hat vortices with the same size and
amplitude as the cosine-shaped vortices considered above. For top-hat vortices, the
critical merging distance is larger, as expected given their larger ‘effective’ radius,
but the dependence of dc on the aspect ratio mirrors that observed for cosine-
shaped vortices. This suggests that the form of dc(H/R) obtained for cosine-shaped
vortices properly represents the general behaviour of the critical merging distance for
baroclinic vortices, independent of their detailed shape.

5. Conclusions
In this paper, we have studied merging of equal vortices lying on the same vertical

level, in three-dimensional quasi-geostrophic flow. Our results indicate that there are
important differences between the case with continuous stratification (as resolved by
a sufficient number of vertical levels) and two-layer dynamics.

The merging of tall (or even spherical) vortices induces a decrease of the vertical
aspect ratio, leading to a flatter final vortex. The vorticity filaments which are ejected
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become curved in the vertical, generating a spiralling envelope around the merging
vortices. The dynamics of the two merging cores is different from its barotropic
counterpart, with a much more complex structure in the interior of the final vortex.
This may lead to a more rapid homogenization of the core, due to small-scale mixing
and diffusive effects, for baroclinic vortices than for barotropic ones.

For flat initial vortices (e.g. H/R = 0.66), the filaments undergo a shear instability
that generates secondary vortices, which live long and trap fluid in their cores. This
instability has been shown to be essentially barotropic, possibly associated with the
more local nature of interactions in stratified fluids.

Consideration of the dynamics of passively advected particles has allowed better
characterizing of the core dynamics, and determining the source regions of the fluid
entrained in the final vortex core. Passive particle dynamics is also valuable for
quantitatively determining the merging time. A study of the critical merging distance
for three-dimensional vortices has indicated that flat vortices need to be much closer
than tall ones in order to undergo merging.
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